最新目录

颅内压与颅内温度监护系统的研制

来源:临床神经外科杂志 【在线投稿】 栏目:期刊导读 时间:2021-03-18
作者:网站采编
关键词:
摘要:1 引言 临床上持续性的颅内压(Intracranial pressure, ICP)增高将会引发脑移位、脑疝等,颅内压监测对了解患者病情,制定有效的治疗方案具有重要的临床意义[1,2]。有创颅内压监测

1 引言

临床上持续性的颅内压(Intracranial pressure, ICP)增高将会引发脑移位、脑疝等,颅内压监测对了解患者病情,制定有效的治疗方案具有重要的临床意义[1,2]。有创颅内压监测,其测量结果可靠,是临床上颅内压测量的金标准[3,4]。目前,临床上有创颅内压监测设备主要有美国强生公司的Codman颅内压监护仪[5,6]、法国Sophysa公司的Pressio多参数监护系统和美国Integra LifeSciences公司的Camino系列颅内压监护仪[7,8]。其中,Codman颅内压监护仪只能监测颅内压参数值,无法显示颅内压波形,其压力传感器为压阻式传感器;Camino系列颅内压监护仪可监测颅内压及颅内温度等参数,但是压力传感器为光纤式传感器,在临床上使用时容易折断。同时,上述监护仪的探头价格昂贵,大大阻碍了颅内压测量在临床神经外科监护上的大范围使用。

已有研究表明,颅内温度对脑损伤病变范围和发展趋势具有重要影响[9,10]。例如,神经外科手术病人发生颅内感染时,颅内温度的变化往往先于颅内压的变化发生。在亚低温治疗颅脑损伤的过程中,其治疗效果明显受颅内温度影响:温度过高达不到治疗目的,温度过低则易引发并发症[11]。因此,持续性的颅内温度监测对颅脑损伤患者而言具有较大的指导和参考意义。

为克服现有颅内压监护设备测量参数单一和使用价格昂贵等局限性,论文研制了一套基于压阻传感器和热敏电阻的颅内压与颅内温度微创多参数监护系统。该系统主要由监护仪主机和检测探头两部分组成。该系统可以连续测量病人颅内压力和颅内温度数据,实现了颅内压和颅内温度参数的数值及波形显示、报警、数据存储等功能。

2 系统硬件设计

2.1 系统框图及硬件电路

颅内压与颅内温度监护系统的硬件原理框图如图1所示。工作流程是:检测探头上的传感器将颅内压力和温度转换为电信号,电信号经过模拟前端进行放大和滤波,再经过AD采样和数据处理,最终成为对应的颅内压和颅内温度数据。同时,监护系统可以实现颅内压与颅内温度的数值及曲线显示;当颅内压超过预定警戒值及其它紧急情况时开启声光报警;存储监测数据等。

论文选用STM32F373VCT6单片机作为颅内压与颅内温度监护系统的主控制器,其两组16位SDADC和DMA可以实现μV级信号的高速采样和缓存[12]。因此,可实现对检测探头中压力传感器和温度传感器的输出电压进行采样。图2为压力传感器的差动放大电路原理图,其中虚线框里表示的是压力传感器。论文采用的压力传感器表面有一层对压力敏感的感受膜片,膜片上下各有1个扩散电阻,当膜片发生应变时, 2个扩散电阻的阻值反向变化。压力传感器与片外2个固定阻值的电阻组成惠斯通电桥,当加上激励电压后,由压力引起的扩散电阻的阻值变化就会以差动电压的形式表现出来。将惠斯通电桥输出的差动电压接至两个运算放大器的同相输入端,构成差动放大电路[13]。

论文对温度传感器输出信号的采样是将热敏电阻与一个高精度参考电阻组合成串联电路,通过SDADC采样得到热敏电阻两端压降,其压降变化幅度通常为几十毫伏。

图1 颅内压与颅内温度监护系统的硬件原理框图

图2 压力传感器的差动放大电路原理图

2.2 颅内压与颅内温度检测探头设计

论文设计并制作了颅内压与颅内温度检测探头[14],该探头结构如图3所示。颅内压参数监测选用美国GE公司的压阻式压力传感器;颅内温度监测选用日本芝浦公司的NTC型热敏电阻。其中,压力传感器尺寸为1.15mm×0.725mm×0.17mm;温度传感器玻璃端直径最大为0.55mm,长度为1.1mm。在图3中,检测探头[15,16]主要由表面开窗的筒状钛合金零件、压力传感器、温度传感器、漆包线(五根铜导线)、尼龙导管及带有插接件的小型电路板(位于导管末端,通过导线与传感器连接)组成。探头制作流程为:将温度传感器置于钛合金零件内部并使用胶水固定;将压力传感器置于钛合金零件的表面,并覆盖硅胶进行电气隔离和保护;随后利用漆包线将两个传感器的电极引出,并在漆包线外使用尼龙导管进行电气隔离和保护;最后,将漆包线中的铜导线分别焊接至小型电路板上。

图3 颅内压与颅内温度检测探头示意图

3 颅内压与颅内温度监护系统嵌入式软件设计

论文选用嵌入式实时内核μC/OS-II[17]开发颅内压与颅内温度监护系统软件。论文按照监护系统的功能进行任务划分,包括初始化任务、按键处理任务、采样任务、显示任务、报警任务、电量扫描、时间刷新任务等,其系统软件流程图如图4所示。同时,根据任务的实时性要求、重要程度、执行周期和CPU占用时间等因素为各任务分配了优先级,具体任务优先级分配如表1所示。

文章来源:《临床神经外科杂志》 网址: http://www.lcsjwkzzzz.cn/qikandaodu/2021/0318/433.html



上一篇:颅内压和颅内温度监护仪研制及实验研究
下一篇:信息化教学在神经外科专业型研究生教学中的应

临床神经外科杂志投稿 | 临床神经外科杂志编辑部| 临床神经外科杂志版面费 | 临床神经外科杂志论文发表 | 临床神经外科杂志最新目录
Copyright © 2019 《临床神经外科杂志》杂志社 版权所有
投稿电话: 投稿邮箱: